课程教育研究 课程教育研究杂志简介 课程教育研究杂志学术期刊 课程教育研究杂志公告 课程教育研究期刊目录 课程教育研究投稿须知 万方论文查重 课程教育研究征稿启事

主管:内蒙古自治区文化厅
  中国外语学习学研究会
主办:内蒙古自治区北方文化研究院
投稿邮箱:tougao@kcjyyj.com
网  址:http://www.kcjyyj.com
数据库收录:万方网收录
我刊入选第二批学术期刊名单
期刊类别:纯教育、G4
国际标准刊号 ISSN 2095-3089
国内统一刊号 CN 15-1362/G4
邮发代号:16-129

我刊投稿论文
当前位置:网站首页 > 我刊投稿论文 >
作者:杨光明 | 字数:4362 | 阅读:

摘 要:钢吊箱围堰施工方法是深水承台施工中的一种主要施工方法。钢吊箱作为深水承台施工的主要构件, 其设计的合理与否关系到整个桥梁的施工质量。以罗屿特大桥高桩承台施工为例,介绍柱式钢吊箱围堰的设计与施工。 重点介绍钢吊箱围堰的设计方案、施工工艺及施工要点等技术细节。同时对钢吊箱围堰施工中的注意事项进行了阐述。工程实践表明,该钢吊箱设计合理, 能满足工程的需要。

关键词:深水裸岩;高桩承台;钢吊箱围堰;设计及施工

1.工程概况

罗屿特大桥为跨越罗屿海峡设计,桥全长765.75m。墩台基础采用φ1.25m和φ1.5m钻孔桩,钻孔桩共计113根,最长桩长36米;桥台为矩形空心桥台,桥墩为圆端形桥墩,最高墩9.75米;桥跨为23-32m预制后张法简支T梁。湄州湾罗屿海峡属于规则半日潮类型,并且低潮位时水位比较低,施工受大风、高潮差的影响较大。桥位区域地质情况从上至下依次为淤泥质土、粉质粘土、全风化混合岩、强风化混合岩、弱风化混合岩。地质资料显示不均匀性,地质条件比较复杂。

8#-23#墩承台基础采用5根钻孔灌注桩, 桩顶以上设整体式高桩承台,承台尺寸为8.7(长)×8.7m(宽)×3m (高),下设封底混凝土设计厚1.5m。桥位位于海中、水深约7-16m。最低水位在-1.5m、最高潮水位在+3.92 m、浪高60cm。承台设计底高程为- 5.4m。根据施工水位、工程特点及工期要求等综合考虑, 决定采用有底钢吊箱围堰施工。考虑到承台砼施工后需要进行防腐处理,钢吊箱围堰尺寸为10m(长)×10m(宽)×12m (高)。

2、整体式钢吊箱围堰设计

(1)钢围堰相关参数

护筒外径D(m): 1.7m, 承台桩数n(根): 5, 设计最高水位(m): 4.6, 围堰顶高程(m):4.6, 围堰底高程(m): -6.9, 承台顶高程: -2.4m, 潮位差H(m): 6.1, 封底厚度h1(m):1.5, 围堰外轮廓底面积A0(m2):100, 孔面积A1(m2): 11.4, (去孔后)A= A0- A1(m2): 88.6

围堰自重G1(t):100, 封底自重G2=2.4x A h1(t):320, 围堰承受最大浮力(t):1019

封底砼与钢护筒粘结力(t):720, 每平方米18吨

(2)工况分析

钢吊箱围堰作业时段, 设计受力状态可按照以下工况条件进行分析。

工况一: 150 cm厚封底混凝土浇筑完成, 按最低水位-1.5m考虑;

吊挂及底承重系统承受吊箱围堰自重及封底砼重量(100+320=420吨)

工况二: 150 cm厚封底混凝土浇筑完成, 抽干水阶段按最高水位+4.6m考虑;

吊箱围堰承受浮力1019吨;

工况三: 浇筑承台混凝土施工阶段,按在最低水位-1.5m考虑;

吊挂系统承受围堰自重及封底砼自重、承台砼重量、封底砼与钢护筒粘结力。浮力剩余部分重量(100+320+590-720-434=-144吨)。故吊挂系统不受力无需验算。

(3)围堰结构组成及受力体系介绍

①模板:吊箱侧模、底模模板采用δ=6mm钢板,∠80×8mm为组合模板边框,内肋为8cm槽钢,间距为30cm。

②侧板:侧板采用模板组合而成,第一层采用双16槽钢竖向布置作为整体背肋(间距为1m)、第二层采用双32工钢横向布置作为加强肋(间距为1.5m×2道+2m×3道),立柱与加强肋采用拉杆螺栓连接并焊接,加强肋与模板背肋采用焊接连接成整体。

(备注说明:考虑到节省吊箱封底砼、吊箱大小重量及后续承台施工方便,吊箱模板设置在外侧为背肋和加强肋结构,因此在封底完成抽干水后吊箱整体结构各个部位焊点处于受拉状态,故在吊箱整体焊接过程一定要按规范要求做到模板和背肋、背肋和加强肋之间紧密焊接。)

③底模及承重结构:底模采用6mm钢板拼装,在护筒处预留孔洞。模板下铺设12工钢作为分配梁,间距为20cm,,分配梁长度为12米;分配梁下设4道双拼45cm工字钢作为主承重梁,每排桩基在护筒两侧各设一道,每道长度均为12m。

④承吊系统:利用钢护筒作为承吊系统,由于封底混凝土浇筑后要割除钢护筒,为保证底模及侧板正常工作,在护筒内埋设φ500mm钢管,作为以后体系的转换。主承重上吊梁采用双贝雷梁(横向布置4组8片贝雷片),长度为12m,顺路线方向在护筒顶立柱横梁上安装,通过50mm圆钢与底承重梁连接,共设置横向4个、纵向8个共32个吊点。

⑤内支撑及封底分仓:为防止侧板在水压下内倾及吊箱下沉定位,在钢护筒与侧模之间设置两道竖向支撑,在封底完成后在为保证吊箱整体稳定性,在吊箱内横向设置三道内支撑(采用200mm钢管)间距为1m+4m+4m+1m;竖向设置两道:一道在承台顶标高上来50cm处,另一道布置在离第一道顶标高四米处。

(3)吊挂系统检算

①悬吊用50mm圆钢

按工况一检算,总荷载为420t,共设置32根吊杆,考虑吊杆间受力不均匀系数1.2,吊杆承受的最大荷载为1.2×420/32=15t。单根圆钢25×25×3.14×140=27.4t,满足要求。

②抗浮,按工况二检算。

检算水位+4.6m, 浮力计算水头差h: 6.1m, 围堰总计算浮力F总=A*h=1019t

围堰封底砼重量G1=320t, 围堰重量G2=100t, 护筒外壁与封底混凝土粘结力G3=720t

抗浮总稳定荷载∑G1=1140t

结论:钢护筒与封底混凝土抗浮稳定系数K=∑G1/F总,满足要求

(4)侧板模板加强肋施工验算

结构模式:内支撑三道横向间距为1m+4m+4m+1m,内支撑直接对顶在模板外侧双拼I32工字钢的垂直面上。

计算模式:按横向三根钢管(横向间距4m)、管顶双拼I32工字钢,按二等跨连续梁计算内力。

受力分析:封底后抽干吊箱内水时最下层I32工字钢横梁承受最大水压力。(此时水头压力H=10米)

N=rHs=10KN/m3×10×8×0.26=208KN q=208/8=26kn/m

Mmax=0.125ql2=0.125×26×16=52KN.m Qmax=(0.625+0.625)ql=1.35×26×4=140KN

I32力学特性:Ix=16574cm4,Wx=920.8cm3,Sx=541.2cm3,t=15.8mm

主梁横梁强度验算

σ=Mmax/Wo=52×106/(920.8×2×103)=28Mpa


    相关推荐

版权所有:课程教育研究杂志 网站地图 最近更新
投稿邮箱:tougao@kcjyyj.com
第二批学术期刊,万方网收录,欢迎投稿!
国际标准刊号:ISSN2095-3089,国内统一刊号CN15-1362/G4